

Rapport de fin de Diplôme Universitaire de Gemmologie

Rédigé à la suite d'une journée de mesures ayant eu lieu le 9 Septembre 2020

Au

Musée du Louvre

THEME :

Etude Gemmologique du livre d'heures de François 1^{er}.

Rédigé et soutenu par : Elodie Romeo Pour l'obtention du Diplôme Universitaire de Gemmologie

Table des matières :

-	Présentation historique de l'objet
-	Description du livre d'heures
-	Techniques d'analyse et d'expertise
-	Présentation des Spectres et résultats obtenus par type de gemmes
	. Les turquoises
	-Spectres Raman obtenus
	- Histoire et gîtologie
	. Les cornalines et Sardoines - Spectres Raman obtenus - Résultats XRF et conclusion
	 Le fermoir : Grenat ou tourmaline ? Spectres Raman obtenus Résultats XRF et chimie Gîtologie Conclusion
- - -	Le « pendentif »

- Présentation historique de l'objet.

Le livre d'heures a été créé dans l'atelier de Noël Bellemare durant la période 1532-1538. Au cours de l'année 1538, il a été acheté par François 1^{er} très certainement pour être offert à sa nièce Jeanne d'Albret.

Il apparait dans plusieurs inventaires de collections ou bien de ventes au cours des siècles.

Le Louvre en a fait l'acquisition par mécénat (tous mécènes) en 2018.

- Description du livre d'heures :

Le livre d'heures apparait dans les inventaires sous la référence (N° RFML.OA.2018.1.1.1), il est exposé dans les galeries du Louvre dans le département des Objets d'Art, dont le conservateur en chef est M. Malgouyres.

C'est donc dans les locaux du Louvre que nous nous sommes rendus le 9 Septembre 2020.

Tout d'abord, le livre est de taille assez petite, pratique pour être transporté dans une paume de main. En effet, voici ses dimensions :85mm x 80mm x 26 mm

Au centre de son recto et de son verso, se trouvent des intailles de cornaline rouge orangé, 5 sur chaque face, 1 grosse pièce centrale ronde et 4 plus petites de forme triangulaire.

Photos des intailles recto (a) et verso (b) :

Figure 1(a)

Figure (b)

. Nombre de pierres :

Le Livre comporte plusieurs types de gemmes qui sont au nombre de 52, ces pierres serties ont été répertoriées de la façon qui suit :

. Descriptif des types de pierres.

Les ovales rouges sur le plan, sont présumées être des rubis. Ils sont sertis par 3 ou 4 griffes en plus d'être sertis en bâte.

Les ovales vertes, représentent des turquoises dont les teintes varient du bleu au vert. Le sertissage de ces dernières est le même que celui des rubis, en bâte avec un nombre de griffes variant de 3 à 4.

Figure 2 photo de sertis en "bâte" 3 et 4 griffes (photo E. Romeo)

Le Fermoir, F0 sur le plan du livre, est quant à lui une pierre de gros gabarit facettée (photo ci-dessous).

Cette pierre, montée en « bâte » sur le fermoir du livre, est tantôt décrite comme une tourmaline tantôt comme un grenat, c'est pour cette raison que les analyses Raman seront intéressantes, nous décrirons plus tard ces mesures ainsi que leurs conclusions.

Fermoir (Photo E. Romeo)

Le nombre de griffes pour chaque pierre référencée ainsi que sa taille, se trouvent dans le tableau ci-dessous : (tableau 1)

Toutes les références commençant par R (tableau 1) sont les pierres situées sur le recto du livre.

	pierre supposée	couleur	taille	sertis bâte + griffes
R1	rubis		brut polis	3
R2	turquoise	В	cabochon	4
R3	rubis		brut polis	4
R4	turquoise	В	cabochon	4
R5	rubis		brut polis	4
R6	turquoise	В	cabochon	4
R7	rubis		brut polis	4
R8	turquoise	V	cabochon	4
R9	rubis		brut polis	3
RO	cornaline			
ROA	cornaline			
ROB	cornaline			
ROC	cornaline			
ROD	cornaline			

Pierres situées sur le verso : (Tableau 2)

V1	rubis		brut polis	4
V2	turquoise	В	cabochon	3
V3	rubis		brut polis	4
V4	turquoise	V	cabochon	3
V5	rubis		brut polis	4
V6	turquoise	В	cabochon	3
V7	rubis		brut polis	4
V8	turquoise	В	cabochon	3
V9	rubis		brut polis	3
V0	cornaline			
V0A	cornaline			
VOB	cornaline			
VOC	cornaline			
VOD	cornaline			

Pierres situées sur	la tranche, de haut	en bas. (Tableau 3))
	ia tranono, ao naat		/

A1	rubis		brut polis	3
A2	turquoise	В	cabochon	3
A3	rubis		brut polis	3
A4	turquoise	В	cabochon	4
A5	rubis		brut polis	3
A6	turquoise	V	cabochon	4
B1	rubis		brut polis	3
B2	turquoise	V	cabochon	4
B3	rubis		brut polis	3
B4	turquoise	V	cabochon	4
B5	rubis		brut polis	4
B6	turquoise	V	cabochon	4
B7	rubis		brut polis	3
B8	turquoise	В	cabochon	4
В9	rubis		brut polis	3
B10	turquoise	В	cabochon	4
B11	rubis		brut polis	3
B12	turquoise	V	cabochon	3
B13	rubis		brut polis	4
B14	turquoise	В	cabochon	3
B15	rubis		brut polis	4
B16	turquoise	V	cabochon	3
B17	rubis		brut polis	4
B18	turquoise	В	cabochon	4
B19	rubis		brut polis	4
B20	turquoise	В	cabochon	4
B21	rubis		brut polis	4
C1	turquoise	V	cabochon	4
C2	rubis		brut polis	0
C3	turquoise	В	cabochon	4
C4	rubis		brut polis	4
C5	turquoise	В	cabochon	4
C6	rubis		brut polis	4

Et enfin, le fermoir F0.

F0 A déterminer facetté	0
-------------------------	---

Techniques d'analyse et d'expertise

Durant cette expertise, nous avons utilisé un panel d'instruments et de méthodes non invasives dont voici les principales caractéristiques :

. Description du matériel de fluorescence X :

L'Institut Lumière Matière possède un Spectromètre portatif par fluorescence X (XRF : X-Ray Fluorescence), cet analyseur est un analyseur XRF Thermo Niton XL3t 980 GOLD.

Ce dernier, permet l'analyse et la caractérisation de la structure chimique des matériaux analysés.

Cependant, toutes les structures atomiques ne sont pas détectées. En effet, il apparait impossible de mesurer les composants chimiques légers situés avant le Magnésium (Mg) dans le tableau périodique.

Les éléments principaux de la composition chimique sont a exprimer en %d'oxyde ou en. ppm (partie par million) et les éléments trace seront quant à eux laissés en ppm car ils apparaissent dans de trop faibles quantités pour être exprimés en %.

Dans le cas du livre d'heures, les mesures XRF sont primordiales, en effet elles nous permettent de quantifier les éléments traces notamment des rubis, et de ce fait d'aider quant à l'hypothèse des gisements.

Cependant, les résultats dépendent de l'état de surface de l'élément analysé. Une mesure effectuée sur la surface plane d'une pierre facettée sera plus précise et fiable que celle faite sur des pierres comme celles de notre livre, c'est-à-dire des cabochons (turquoises) et des bruts polis (rubis)

. Description des spectromètres Raman

L'analyse de diffusion inélastique de la lumière et son interprétation ont permis à Sir *Chandrashekhara Venkata Râman* (7 novembre 1888 - 21 novembre 1970) d'obtenir le Prix Nobel de Physique en 1930.

La diffusion Raman est une méthode photonique basée sur la diffusion inélastique des photons ; Nous nous baserons sur la diffusion stokes c'est-à-dire que dans un milieu donné qui absorbe de l'énergie des photons incidents, on obtient alors des photons diffusés qui auront une énergie différente (inferieure) à celle du photon incident.

Cette méthode non invasive, permet d'obtenir des spectres correspondant aux fréquences des modes de vibration des liaisons atomiques des matériaux.

En effet, cette analyse nous permettra de mesurer la « signature » d'un matériau, qu'il soit cristallin ou amorphe, et de ce fait, nous pourrons alors à l'aide des fichiers de données. RRUFF faire corroborer nos mesures avec des spectres répertoriés et identifier dans notre cas les pierres analysées.

Pour étudier la structure d'un matériau, via un spectromètre Raman, il faut utiliser un laser d'excitation qui ne créera aucun phénomène de luminescence de notre matériau, c'est pour cette raison que nous possédons plusieurs spectromètres Raman portables fibrés avec une longueur d'onde de laser d'excitation différente a chacun.

Deux spectromètres ont été utilisé :

Les deux spectromètres sont des Ocean Optics :

Figure 4- Spectromètre Ocean Optics 785nm

Ci-contre, Ocean Optics R3000 :

- . Longueur d'onde d'excitation : 785nm
- . Domaine d'analyse : 200-2700 cm-1
- . Résolution spectrale : 4 cm-1
- . Distance de travail en bout de fibre optique : 4.5 mm

Le second spectromètre fibré possède les caractéristiques suivantes :

- . Longueur d'onde d'excitation : 532 nm
- . Domaine d'analyse : 100-1800 cm-1
- . Résolution spectrale : 2 cm-1

Figure 5- Mesure Raman du fermoir du livre d'heures (a) sous fibre proches Infra-rouge 785nm(b) et a 532nm (c) (Photos G.Panczer)

(a)

. Eclairage par lampe UV

L'éclairage par lampe UV dans notre cas proches UV 365nm permet de voir la luminescence de certains matériaux, dans le cas des rubis notamment ainsi que d'apercevoir la luminescence issue de matériaux de type résine ou colle. (cf annexe photo du chérubin du recto sous UV)

(b)

Figure 6- Luminescence des rubis sous lampe UV (Photo E.Romeo)

. Microscope USB

Lors de cette journée de mesures, nous avons utilisé une microscope USB. Moins encombrant qu'un microscope optique, ce dernier permet tout de même d'obtenir des photos macro de bonne qualité qui peuvent permettre de déceler certaines inclusions.

Figure 7- Tranche du livre d'heures sous microscope USB (photo G. Panczer)

- Présentation des Spectres et résultats obtenus par type de gemmes

. Les rubis

Le rubis est un corindon. Le corindon fait partie de la famille des oxydes, notamment du groupe corindon-hématite. Tous les cristaux dépendants de ce groupe ont une structure de type X₂O₃, dans notre cas, X est le cation trivalent Al3+ parfois remplacé par Cr3+.

Ce corindon est appelé Rubis car sa couleur du même nom est due à la présence d'atomes de Chrome trivalent Cr3+ qui se sont substitués à quelques atomes d'Aluminium. Le chrome est donc un élément trace qui déterminera la couleur de ce corindon.

Le système cristallin du corindon (ici rubis) est un système rhomboédrique, il est de coordinence tétraédrique AIO6 (ou CrO6 ici), c'est-à-dire que chaque octaèdre partage une arête et deux sommets avec un autre octaèdre.

Dans cette configuration, un atome d'aluminium -ou lorsqu'il est substitué- un atome de Chrome a comme plus proches voisins 6 atomes d'oxygène. (cf modélisation Carine cidessous)

Figure 8- coordinence tétraédrique AlO6 (vue 3D)

-Spectres Raman obtenus

Figure 9-Spectres Raman de 2 rubis du livre comparé a un spectre de rubis RRUFF

- Ce sont bien des rubis qui sont sertis sur le livre d'heures. En effet, on peut voir que les pics obtenus correspondent à ceux observés sur les spectres du rubis donnés sur le RRUFF. (ref R060020)

- Gîtologie des rubis.

La gîtologie du rubis est riche, des gisements existent sur tous les continents et d'après le dosage des éléments trace, nous pouvons obtenir des renseignements sur la potentielle provenance des pierres étudiées.

Cependant, le Chrome étant responsable de la couleur rouge des rubis, il est nécessaire de l'isoler durant ces comparaisons car il ne donnera aucun renseignement sur l'origine du rubis.

D'après les données relevées dans les articles de Muhlmeister et al., 1998; Zaw et al., 2014; Palke et al., 2019; Sutherland et al., 2019, nous avons pu comparer la composition chimique des rubis sertis sur le livre aux compositions chimiques de rubis venant de plusieurs gisements à travers le monde.

Figure 10- Carte du monde représentant les différents gisements et classification des rubis (Giuliani et.al., 2020)

Le « contexte géodynamique » est associé dans les conditions nécessaires à la formation des pierres.

Il existe 3 types de contextes dont dépendront la croissance et les caractéristiques des cristaux.

Les gisements sont représentés avec en description le contexte dont ils sont issus.

ll y a :

- Le contexte magmatique. (roches ignées)
- Le contexte métamorphique.
- Le contexte sédimentaire.

Figure 11- Schéma représentant le cycle des roches.

Туре	Contexte	Type de Roche	Gisements
IA	magmatique	Xénocristal* dans basalte	Madagascar
IB	magmatique	Xénocristal dans kimberlite	RDC
IIA1	métamorphique	Roche mafique-ultramafique*	Tanzanie, Malawi
IIA2	métamorphique	Marbre	Myanmar, Vietnam, Afghanistan, Tadjikistan

Les Rubis sont classés selon leur typologie de la manière suivante (Giuliani et.al., 2020)

IIB1	métamorphique		Groenland
IIIA	sédimentaire	Basalte alcalin *	Cambodge, Thaïlande, Australie
IIIB	sédimentaire	Roche mafique-ultramafique	Mozambique
IIIB	sédimentaire	Roche métamorphique	Madagascar

Tableau 1- Classement des rubis par rapport au contexte rocheux (Giuliani et.al.,2020)

* Xénocristal : Cristal étranger au contexte dans lequel il se trouve.

* Roche mafique-ultramafique : Roche magmatique pauvre en Silice.

* Basalte alcalin : Riche en sodium et/ou potassium

- Résultat XRF obtenus et hypothèse des gisements.

La Tableau concernant la composition chimique de chaque rubis se trouve en Annexe 2.

	Rubis du Livre				
ppm	Moyenne (15 pierres)	+/- 20			
Fe	2378	369			
Cr	1461	53			
V	210	26			
Ti	120	52			
Ga	33	13			

Tableau 2-Moyenne des concentrations d'éléments trace des rubis.

Rappel : Le Chrome responsable de la couleur des rubis ne sera pas comparé aux données des différents gisements, en effet il n'est pas dépendant des lieux de prélèvements. (Palke *et al.*, 2019)

A part le chrome, les éléments trace inhérents à la gitologie d'un rubis sont : le Fer, le Vanadium (ici très élevé 210ppm en moyenne tout de même avec un gap très élevé entre les différents échantillons de 23ppm à 1076ppm), le Titane ainsi que le Gallium.

D'après les articles trouvés, on peut lire que la majorité des gisements de rubis ont des valeurs de vanadium très faibles (< à 20ppm) (Giuliani *et al.*, 2020) seuls les gisements du Myanmar possèdent des teneurs en vanadium élevés. (Palke *et al.*, 2019)

Nous avons donc comparé nos teneurs en vanadium, titane et fer avec les teneurs de différents gisements d'Afrique, d'Asie, de Madagascar.

Figure 12- Graphs contenant toutes les données des différents gisements ici V/Fe+Ti (échelle Log10)

Ci-dessus, les mêmes données, cependant l'échelle logarithmique a été nécessaire afin de pouvoir faire ressortir les correspondances.

Hormis, un rubis, on peut voir sur le graphique ci-dessus que tous sont concentrés dans le « nuage jaune » qui correspond à un nuage de points de gisements du Myanmar.

Après avoir isoler certains gisements notamment tous ceux autres que Myanmar, on peut affiner les hypothèses des origines du rubis. C'est ce que représentent les figures 13 et 14 où on a gardé uniquement les gisements de Mogok (Myanmar) reconnu comme étant « La vallée des rubis ».

Figure 13-Graph des teneurs en fer en fonction du vanadium échelle Log avec les données de Muhlmeister et al., 1998 ; Zaw et al., 2019 ; Sutherland et al., 2019).

Figure 14--Graph des teneurs en fer en fonction du vanadium échelle Log avec les données de Muhlmeister et al., 1998 ; Zaw et al., 2014 ; Palke et al., 2019 ; Sutherland et al., 2019).

Conclusion :

On peut conclure que les rubis du livre proviennent très certainement du Myanmar, en effet, nos teneurs en Vanadium en comparaison avec celles d'autres gisements, nous aident à confirmer cette hypothèse.

De plus, 90% des rubis proviennent des gisements Birmans, ils comptent parmi les plus anciens gisements exploités pour leur rubis et saphirs.

. Les turquoises

La turquoise est un phosphate, elle a pour composition chimique : CuAl₆(PO₄)₄(OH)₈·4H₂O. Son système cristallin est un système triclinique, et elle doit son opacité au fait qu'elle est une gemme cryptocristalline et non monocristalline.

Leur couleur varie du bleu turquoise au vert en fonction de la teneur en fer et de la teneur en cuivre.

-Spectres Raman obtenus

Figure 15-Spectres Raman de deux turquoises du livre comparés à un spectre de la base de données RRUFF.

Malgré des spectres très bruités, certains pics sont noyés dans un signal sur bruit très élevé mais nous pouvons tout de même certifier que les pierres sont bien des turquoises. Les données XRF se trouvent en annexe 3, elles montrent des teneurs en fer allant de 222ppm (pour les turquoises les plus bleues) à 17865ppm (pour les turquoises de couleur verte).

- Histoire et gîtologie

Les turquoises sont extraites depuis l'antiquité, on les trouve notamment en Egypte pour les mines les plus anciennes.

En Iran notamment, il existe trois mines reconnues depuis des siècles (Mousavipak, 2020)

Neyshapour

Baghu

Meyduk

En Ouzbékistan, une mine était exploitée durant la periode de La Route de la Soie (XIV-XVeme Siècle) elle se situait dans le desert de Qizilqum et a été exploitée dès le 4^{ème}.Mil av.JC (Caro et al.,2017)

Figure 16-Carte des gisements historiques et actuels de turquoises (Mousavipak 2020)

Conclusion :

Aucune affirmation ne peut être faite quant à la provenance des turquoises serties sur le livre d'heures. En effet, rien ne peut affirmer (hormis la période de fabrication) que les pierres pourraient provenir plutôt de Perse ou d'Ouzbékistan que d'Egypte.

. Les cornalines et les sardoines

Les cornalines et les sardoines sont des calcédoines. La cornaline doit son nom au cornouiller, dont l'étymologie descend du mot « *cornus* » pour son aspect que l'on pourrait comparer a celui de la corne.

On différencie la cornaline de la sardoine avec la couleur, la cornaline sera rouge tandis que la sardoine arborera un rouge/orange.

Les calcédoines appartiennent à la famille des Oxydes, plus particulièrement des quartz cryptocristallins, petits cristaux qui lui confèrent un aspect opaque.

C'est plus particulièrement une silice SiO₂ cryptocristalline, son système cristallin est un système trigonal (rhomboédrique).

-Spectres Raman obtenus :

Figure 17-spectres Raman des cornalines à 785nm comparés à un spectre RRUFF

Dans les spectres Raman (figure 16), nous pouvons affirmer que les intailles du livres sont bien des cornalines.

En effet, le pic principal du quartz est visible à 464 cm⁻¹, mais il y a aussi le pic de la moganite visible à 500 cm⁻¹.

La moganite est un polymorphe du quartz, c'est-à-dire qu'elle a la même composition mais pas la même structure que le quartz, contrairement à la cornaline et à la sardoine, son système cristallin est un système monoclinique. (Schmidt *et al.*, 2013 ; Heaney and Post, 2001).

Grâce à l'intensité des pics de quartz et des pics de moganite, nous pouvons calculer les proportions quartz vs moganite de nos intailles. (Environ 80% de quartz et 20% de moganite)

La présence de moganite dans les calcédoines vient du fait que la calcédoine est un assemblage de cristallites de quartz, parfois (mais rarement) pure, il est fréquent de trouver une autre phase de la silice sous la forme de moganite. C'est le cas ici.

ppm	Moyenne (10)	+/- 2□
SiO ₂	95,1 %	
S	2371	63
Ca	1300	210
Ag	855	36
Fe	261	119

-Résultats XRF et conclusion

On peut remarquer, qu'avec les mesures XRF, que plusieurs éléments se trouvent en trace dans nos intailles.

- Gîtologie et histoire

D'après plusieurs lectures, il apparait qu'il existe plusieurs lieux de gisements de Cornaline, ils sont situés en Uruguay, au Brésil et en Inde.

Cependant, les gisements les plus anciens sont les gisements indiens et indonésiens (Sumatra) (Gliozzo, 2019).

La calcédoine sous toutes ses formes est exploitée depuis des millénaires, mais peu de pièces sont aussi grandes et de si belle qualité (homogénéité et couleurs) que les deux intailles du livre d'heures. (En annexe 4: photos des intailles)

. Le fermoir : Grenat ou tourmaline ?

D'après certains écrits, inventaires ou catalogues de ventes, il demeure une question de quelle pierre s'agit-il ?

En effet, d'après les écrits historiques, cette pierre est décrite comme étant d'abord un rubis (de 1539 et de 1561), puis ensuite comme étant un grenat (de 1561 à 1925), et enfin enfin elle est décrite dans des catalogues de vent comme étant une tourmaline (Description of an Illuminated Manuscript in a Gold and Jewelled Renaissance Binding par S. J. Phillips Limited) en 1942.

Cette pierre est assez grosse, facettée et d'une teinte rouge grenadine avec des reflets orangés.

Figure 18- Photos du fermoir en macro (E. Romeo)

Afin de déterminer s'il s'agit d'un grenat ou d'une tourmaline, il faut comparer les spectres obtenus sur le fermoir à ceux du RRUFF correspondant à un grenat et une tourmaline.

-Spectres Raman obtenus

Figure 19- Comparaison des spectres Raman du fermoir et de deux spectres issus du RRUFF, un spectre tourmaline elbaïte et un spectre grenat pyralmandin. 785nm

D'après la figure 18 ci-dessus, on peut voir que le spectre Raman du fermoir (excitation à 785nm) corrobore avec le spectre RRUFF d'un grenat pyralmandin.

On peut aisément se rendre compte que lors de ces comparaisons, le spectre du fermoir ne correspond pas avec celui d'une tourmaline elbaïte RRUFF.

AFFIRMATION : Le fermoir n'est pas une tourmaline mais bien un grenat.

Cependant, il existe plusieurs grenats, dans ce cas, nous devons évaluer les pourcentages de pôles purs du fermoir afin de déterminer de quel grenat il s'agit.

C'est grâce aux mesures de fluorescence X que nous allons pouvoir déterminer cela.

- Mesures XRF et chimie.

La famille du grenat rassemble de nombreuses variantes suivant la formule générale A₃B₂(C O₄)₃, il appartient aux nésosilicates. Son système cristallin est cubique.

Il existe deux grandes familles de grenats :

 Les pyralspites, qui sont des Silicates d'Aluminium, de couleur rouge violacé à rouge orangée qui regroupent 3 pôles purs :

-Pyrope : 100% Magnésium 2+ formule chimique : Mg3Al2(SiO4)3

Le grenat pyrope (pyros=feu) est de couleur rouge vif.

Figure 20-pyrope brut (photo libre de droit)

-Almandin : 100% Fer 2+ formule chimique : Fe₃Al₂(SiO₄)₃

Le grenat almandin est de couleur rouge violacé. Il est le plus commun des grenats.

Figure 21- Grenats almandin (Par Didier Descouens — Travail personnel, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=12643439)

-Spessartite : 100% Manganèse 2+ formule chimique : Mn₃Al₂(SiO₄)₃

Le grenat spessartite est de couleur rouge orangé à orange.

-Grossulaire : 100% Calcium 2+ formule chimique : Ca₃Al₂(SiO₄)₃

Le grenat grossulaire est de couleur jaune orangé (pyralspites) à vert/brun. (ugrandites)

 Les ugrandites, qui sont des silicates de calcium, de couleur jaune-orangé (grossulaire) à vert (andradite et uvarovite).

Nous ne nous attarderons pas a cette famille puisque nous pouvons affirmer que d'après sa couleur, le grenat serti en fermoir du livre appartient sans nul doute a la famille des pyralspites.

	Pierre fermoir	Erreur +/-2🛛
SiO ₂	44,5	0,6
Al ₂ O ₃	32,6	1,1
FeO	20,0	0,3
MgO	17,1	1,8
CaO	2,1	0,3
MnO	0,7	0,1

-Mesures XRF et détermination de l'espèce du grenat

Ce tableau nous a permis de calculer les pourcentages de pôles purs pyrope, almandin et spessartite du fermoir grâce à une fiche de calcul Excel, les pourcentages suivants sont affirmés :

- Pyrope : 56,6 %
- Almandin : 37,2 %
- Grossulaire 4,9 %
- Spessartite 1,3 %

Ces pourcentages vont nous permettre de positionner la pierre du fermoir dans le diagramme triangulaire des pyralspites.

Figure 22- position de F0 dans le diagramme triangulaire des pyralspites

D'après la figure 22, il est conclu que le fermoir est donc un grenat pyrope-almandin (rhodolite) et non une tourmaline

- Gîtologie

Les gisements de grenats rhodolites historiques se trouvaient dans le Sud-Est de l'Inde ou du Sri-Lanka (Dirham *et al.*, 2019). Aujourd'hui, on trouve des gisements en Afrique (Madagascar, Tanzanie, Mali, Kenya, Mozambique) ainsi qu'au Kazakhstan, et au Pakistan.

Figure 23-Figure 25. Gisements de grenats rhodolites (Mindat).

- Le « pendentif »

Accompagnant le livre d'heures, un « pendentif » portant le numéro d'inventaire RFML.OA.2018.1.1.2. Il est décrit pour la première fois dans l'inventaire du trésor de Jeanne d'Albret au château de Pau en 1561 (Malgouyres, 2018).

Figure 24-Photo du signet (E.Romeo)

Description :

Cet objet qui pourrait être décrit comme un stylet, possède les dimensions suivantes : 6,2x1,4x1,5 cm.

Il comprend 22 pierres serties turquoises et rubis en alternance en colonne et diamants et rubis alternés en couronne, une figurine représentant le Christ en agate et enfin, une perle percée montée en breloque. (cf figure 24)

Il possède aussi des émaux visibles en annexe.

Contrairement au livre, la majorité des pierres, rubis et diamants sont facettés, ces derniers sont sertis en bâte et maintenus par 4 griffes tandis que les turquoises cabochon sont maintenues par 3 griffes (cf Figure 25). On peut donc penser qu'il est contemporain au livre.

Figure 25-Photos de 3 pierres du signet sertis en bâte par 4 ou 3 griffes.

- Conclusion globale de cette étude

Cette journée de mesures nous a permis de certifier que le livre comporte bien 52 pierres serties qui sont 24 turquoises bleues ou vertes et 27 rubis ainsi que le fermoir.

Les couvertures Recto/Verso sont ornées de 2 intailles de cornalines/sardoine ainsi que 8 chérubins dont un a été réparé et dont la colle rougeâtre est luminescente sous lampe UV. (Annexe 1)

Le fermoir qui était tantôt décrit comme un grenat tantôt comme une tourmaline s'avère être un grenat pyralmandin (Rhodolite). Sa couleur a pu tromper les experts de S.J. Phillips Limited en 1942 qui ont pu la confondre avec une tourmaline, mais c'est certainement toujours le grenat décrit sur les inventaires de 1755 qui se trouve sur le fermoir du livre.

Le pendentif est très certainement contemporain du livre, en effet, si le livre a des rubis polis brut, le pendentif possède des rubis taillés et facettés et il en est de même pour les diamants.

Concernant les origines des pierres, compte tenu de leur teneur en vanadium élevé, nous pouvons penser que les rubis proviennent de Mogok. (Myanmar)

Pour les turquoises, je n'ai pas réussi à prouver qu'elles proviennent d'Iran, d'Ouzbékistan ou même d'Egypte.

Le grenat pyralmandin du fermoir provient très certainement d'Inde, tout comme les cornalines des couvertures. (Cf. carte en annexe 5)

-Données bibliographiques

Bariand P. et Poirot J.-P. (2004) Larousse des pierres précieuses. Paris : Larousse, p. 226 et p. 228.

Bouillard J-C Ouvrage pierres précieuses, ING, p. 164

- Capefigue J. B. (1845) François 1er et la Renaissance, 1515-1547. Volume 2, Amyot Ed., p. 170.
- Caplan C. (2018) In Mogok. La vallée des pierres précieuses. Ouvrage collectif sous la direction de Kennedy Ho, Grenoble, Glénat, p.32 et p. 33.
- Caro F., Deborah S. and Santarelli B. (2017) Proveniencing Turquoise Artifacts from Ancient Egyptian Contexts: A Non-invasive XRF Approach. Poster, SAEMT Conference, 4-6 novembre 2017, le Caire.
- Cimber L. et Danjou F. (1835) Extraits des comptes de dépense de François Premier, Archives curieuses de l'histoire de France depuis Louis XI jusqu'à Louis XVIII, 1re série. Tome 3e, Paris, p. 77-100 (p. 99-100).
- Conti N. (de). (2004) Le voyage aux Indes de Nicolò de Conti (1414 1439). Paris : Chandeigne, p. 20
- Dirlam D.M., Rogers C.L. and Weldon R. (2019) Gemstones in the era of the Taj Mahal and Mulghals. *Gems & Gemol.*, 55, 3, 294–319.
- Giuliani G., Groat A.A., Fallick A.E., Pignatelli I. and Pardieu V. Ruby deposits: A review and geological classification. *Minerals*, 2020, 10, 597.
- Gliozzo E., Mattingly D.J., Colec F. and Artiolid G. (2014) In the footsteps of Pliny: tracing the sources of Garamantian carnelian from Fazzan, south-west Libya. *Journal of Archaeological Science*, 52, 218-241.
- Gliozzo E. (2019) Variations on the silica theme: Classification and provenance from Pliny to current supplies. *EMU* Notes in Mineralogy, 20, 2, 13–85.
- Götze, J., Nasdala, L., Kleeberg, R. and Wenzel M. (1998) Occurrence and distribution of "moganite" in agate/chalcedony: a combined micro-Raman, Rietveld, and cathodoluminescence study. *Contrib Mineral Petrol.* 133, 96–105.
- Heaney P.J. and Post J.E. (2001) Evidence for an I2/a to Imab phase transition in the silica polymorph moganite at ~570 K. *American Mineralogist.*, 86, 1358-1366.
- Kongsomart B., Vertriest W. and Weeramonkhonlert V. (2017) Preliminary observations on facet-grade ruby from Longido, Tanazania. *Gems & Gemol.* 53, 472–473.
- Laborde L. (marquis de) (1880) Les comptes des Bâtiments du roi (1528-1571), suivis de documents inédits sur les châteaux royaux et les beaux-arts au 16e siècle, Paris, Vol. 2.
- Lafuente B., Downs R.T., Yang H. and Stone N. (2015) The power of databases: the RRUFF project. In: Highlights in *Mineralogical Crystallography*, T. Armbruster and R. M. Danisi, eds. Berlin, Germany, W. De Gruyter, 1-30.

Malgouyres P. (2018) Le livre d'heures de François Ier, éditeur SOMOGY, collection Solo.

Molinier E. (1892) Inventaire des meubles du château de Pau, 1561-1562, Fernand Mazerolle (éd.)

- Mousavipak N. (2020) Physico-chemical characterization of iranian turquoises: a tentative to trace middleeastern turquoise-bearing artifacts., Thèse de l'Université Lyon 1, 21 janvier 2020.
- Muhlmeister S., Fritsch E., Shigley J.E., Devouard B. and Laurs B.M. (1998) Separating natural and synthetic rubies on the basis of trace-element chemistry. *Gems & Gemol.* 34, 80–101.
- Ogden J. Gems and the Gem Trade in India in <u>Beyond Extravagance: a Royal Collection of Gems and Jewels</u>, 2013, ed. Amin Jaffer, Assouline, New York.
- Palke A.C., Saeseaw S., Renfro N.D., Sun Z. and SMcClure S.F. (2019) Geographic origin determination of ruby. *Gems & Gemol.*, 55, 4, 580–612.
- Plantey D. (2016) Généalogie féminine et livresque des Albret Navarre aux xve et xvie siècles. Les livres In : Les bibliothèques des princesses de Navarre au xvie siècle : Livres, objets, mobilier, décor, espaces et usages p. 219-242.
- Robins G.H., Walpole H. and Costello D. (1842) Strawberry Hill, the renowned seat of Horace Walpole. Hazen's Edition.
- Schmidt P., Bellot-Gurlet L., Lea V. and Sciau P. (2013) Moganite detection in silica rocks using Raman and infrared spectroscopy. *European Journal of Mineralogy*, Copernicus, 25, 5, 797-805.
- Sessin S. (2014) Gems in Renaissance Material Culture. Masters thesis, University of London.
- Shigley J.E., Laurs B.M., Janse A.J.A., Elen S. and Dirlam D.M. (2010) Gem localities in the 2000s. *Gems & Gemol.*, 46, 3, 188–216.
- Tallet, P., 2003. Notes sur la zone minière du Sud-Sinaï au Nouvel Empire. Bull. Institut Français d'Archéologie Orientale, 103, 459-486.
- Thoresen L. (2015) Archaeogemmology and ancient literary sources on gems and their origins. In GEMSTONES IN THE FIRST MILLENNIUM AD, MINES, TRADE, WORKSHOPS AND SYMBOLISM, International Conference, October 20th, Römisch-Germanisches Zentralmuseum, Mainz.
- Walpole, H., Godfrey J., Newton, J., Morris T., Marlow W., Edwards E. and Pars W. Kirgate T. (1774) A Description of the Villa of Horace Walpole, Youngest Son of Sir Robert Walpole Earl of Orford, At Strawberry-hill, Near Twickenham: With an Inventory of the Furniture, Pictures, Curiosities, &c. Strawberry-hill: Printed by Thomas Kirgate (2d édition 1784).
- Zaw K., Sutherland L., Yui T.F., Meffre S. and Thu K. (2014) Vanadium-rich ruby and sapphire within Mogok Gemfield, Myanmar: Implications for gem color and genesis. *Miner. Deposita*, 50, 25–39.

ANNEXES

On peut voir sur les photos ci-contre la réparation du chérubin grâce a la luminescence de la résine utilisée.

٨

Figure 26-Annexe 1 Photo sous lampe UV du livre d'heure

Figure 27-photo du chérubin réparé avec de la résine

Tableau 3-Annexe 2 Tableau recensant les valeurs XRF classé par valeurs décroissantes en Vanadium des rubis du livre d'heures ainsi que de ceux des gisements mondiaux. (G.Panczer)

		Éléments- trace (ppm)							
	1				[[-
Gisement	Pays	v	Mg	Ti	Fe	Ga	Cr	Roche mère	Ref
Sin-khwa 1 C	Myanmar	5213	34	54	67	31	433	marble	Zaw <i>et al.,</i> 2LOD14
Sin-khwa 1 R	Myanmar	5044	39	56	76	27	369	marble	Zaw <i>et al.</i> , 2014
Sin-khwa 2 C	Myanmar	4271	31	95	59	28	165	marble	Zaw <i>et al.</i> , 2014
Sin-khwa 2 R	Myanmar	3960	105	132	79	90	3758	marble	Zaw <i>et al.,</i> 2014
Lone-sho R	Myanmar	2970	60	76	65	52	867	marble	Zaw <i>et al.,</i> 2014
B15	Livre d'heures	1076	LOD	LOD	1284	LOD	5651		Livre d'heures
Mye-me R	Myanmar	520	54	95	77	79	1221	marble	Zaw <i>et al.,</i> 2014
A5	Livre d'heures	515	LOD	LOD	173	LOD	3511		Livre d'heures
Mye-me C	Myanmar	483	50	88	60	81	356	marble	Zaw <i>et al.,</i> 2014
Mong Hsu 2 C	Myanmar	417	115	1210	26	89	7015	marble	Sutherland et al., 2019
Mong Hsu 1 R	Myanmar	391	48	1410	14	69	2026	marble	Sutherland et al., 2019
Baw-padan 1 C	Myanmar	347	40	74	270	166	2339	marble	Zaw <i>et al.,</i> 2014
Mong Hsu 2 R	Myanmar	342	68	778	29	83	5600	marble	Sutherland et al., 2019
Mong Hsu 1 C	Myanmar	324	70	1815	9	66	3199	marble	Sutherland et al., 2019
Baw-lone-lay 1 R	Myanmar	257	45	87	129	164	1671	marble	Zaw <i>et al.,</i> 2014
Thurein Taung R	Myanmar	243	85	254	143	79	2468	marble	Sutherland et al., 2019
B5	Livre d'heures	230	LOD	LOD	123	LOD	2297		Livre d'heures
Chaung-gyi 1 C	Myanmar	228	15	31	123	185	712	marble	Zaw <i>et al.,</i> 2014
Kolan R	Myanmar	226	69	143	396	148	802	marble	Zaw <i>et al.,</i> 2014
Thurein Taung R	Myanmar	225	78	139	127	75	2494	marble	Sutherland et al., 2019
Kolan C	Myanmar	223	61	125	388	155	683	marble	Zaw <i>et al.,</i> 2014
Mogok average	Myanmar	212	40	45	35	18	3845	marble	Palke <i>et al.,</i> 2019
Baw-mar C	Myanmar	206	260	348	138	67	1250	marble	Zaw <i>et al.,</i> 2014
Baw-padan 1 R	Myanmar	206	33	70	442	106	29	marble	Zaw <i>et al.,</i> 2014
Baw-lone-lay 2 R	Myanmar	201	53	103	100	70	1810	marble	Zaw <i>et al.,</i> 2014
Baw-lone-lay 1 C	Myanmar	191	52	109	148	119	1871	marble	Zaw <i>et al.,</i> 2014
Baw-mar R	Myanmar	186	215	335	131	64	1560	marble	Zaw <i>et al.,</i> 2014
B17	Livre d'heures	173	LOD	LOD	188	LOD	1795		Livre d'heures
Mogok median	Myanmar	158	40	44	22	17		marble	Palke <i>et al.,</i> 2019
Baw-lone-lay 2 C	Myanmar	124	69	152	67	55	1867	marble	Zaw <i>et al.,</i> 2014
Mong Hsu average	Myanmar	123	23	247	2	15		marble	Palke <i>et al.,</i> 2019
Chaung-gyi 1 R	Myanmar	117	23	157	83	179	28	marble	Zaw <i>et al.,</i> 2014

Mong Hsu median	Myanmar	112	19	176	0	16		marble	Palke <i>et al.,</i> 2019	
C4	Livre d'heures	112	LOD	LOD	322	LOD	2004	Livre d'heures		
Baw-padan 2 R	Myanmar	109	35	69	310	142	3359	marble Zaw et al., 2014		
Lone-sho C	Myanmar	101	36	26	54	27	9	marble	Zaw <i>et al.,</i> 2014	
Chaung-gyi 1 C	Myanmar	99	57	224	52	8	313	marble	Zaw et al., 2014	
Baw-padan 2 C	Myanmar	96	40	84	45	131	3003	marble	Zaw <i>et al.,</i> 2014	
Chaung-gyi 1 R	Myanmar	92	48	85	110	7	353	marble	Zaw <i>et al.,</i> 2014	
B19	Livre d'heures	87	LOD	LOD	650	LOD	770	Livre d'heures		
C2	Livre d'heures	86	LOD	LOD	186	LOD	1732	Livre d'heures		
B21	Livre d'heures	73	LOD	LOD	159	LOD	2472	Livre d'heures		
C6	Livre d'heures	60	LOD	LOD	2650	LOD	1497	Livre d'heures		
V1	Livre d'heures	59	LOD	LOD	409	LOD	1693		Livre d'heures	
A1	Livre d'heures	50	LOD	LOD	3487	LOD	1149		Livre d'heures	
Vietnam average	Vietnam	43	33	132	54	21		marble	Palke <i>et al.,</i> 2019	
Tajikistan average	Tadjikistan	38	15	127	36	21		marble	Palke <i>et al.,</i> 2019	
Afghanistan average	Afghanistan	34	33	68	124	14	2395	marble Palke <i>et al.</i> , 2019		
Tajikistan median	Tadjikistan	34	13	91	0	20		marble	Palke <i>et al.,</i> 2019	
Pailin Cambodia MAX2	Cambodge	33	226	210	3620	34	7761		Giuliani <i>et al.,</i> 2020	
Afghanistan median	Afghanistan	30	27	42	105	12		marble	narble Palke <i>et al.</i> , 2019	
Vietnam median	Vietnam	27	24	60	24	20		marble	Palke <i>et al.,</i> 2019	
Longido Tanzania MAX	Tanzanie	25	42		544	10	5059	Giuliani et al., 2020		
B13	Livre d'heures	23	LOD	LOD	262	LOD	594	Livre d'heures		
Pailin Cambodia MAX	Cambodge	22	258	128	1935	11		Giuliani <i>et al.,</i> 2020		
Madagascar average	Madagascar	17	32	42	933	15		basalt	Palke <i>et al.,</i> 2019	
Pailin Cambodia MIN2	Cambodge	16	118	95	2454	18	450		Giuliani <i>et al.</i> , 2020	
Madagascar mean	Madagascar	15	33	34	887	15		basalt	Palke <i>et al.,</i> 2019	
Greenland MAX	Groenland	14	81	210	2516	25	2871	Giuliani <i>et al.,</i> 2020		
Cambodge average	Cambodge	11	154	77	1317	9	2853	basalt Palke et al., 2019		
Cambodge median	Cambodge	11	151	74	1325	9		basalt	Palke <i>et al.,</i> 2019	
Malawi MAX	Malawi	10	39		2760	15	1816	Giuliani <i>et al.,</i> 2020		
Thailand average	Thailand	8	143	54	1089	8	2867	basalt Palke <i>et al.,</i> 2019		
Thailand median	Thailand	7	138	51	1183	7		basalt	Palke <i>et al.,</i> 2019	
Pailin Cambodia MIN	Cambodge	5	97	32	818	5			Giuliani <i>et al.,</i> 2020	
Longido Tanzania MIN	Tanzanie	3	7		62	6	1604		Giuliani <i>et al.,</i> 2020	
Mozambique average	Mozambique	3	29	21	622	8		basalt	Palke <i>et al.,</i> 2019	
Mozambique median	an Mozambique		27	20	431	7		basalt	Palke <i>et al.,</i> 2019	
Malawi MIN	Tanzanie	1	10		953	5	269		Giuliani <i>et al.,</i> 2020	

Winza Tanzania MAX		1	118		1596	11	1094	Giuliani <i>et al.,</i> 2020
Greenland MIN	Groenland	0,1	2	15	655	0,7	50	Giuliani <i>et al.,</i> 2020
Winza Tanzania MIN	Tanzanie	0	0		405	4	161	Giuliani <i>et al.,</i> 2020

Tableau 4 : Annexe 3 - Données XRF des turquoises du livre d'heures

Reading No	Al	Al2O3	Cu	CuO	Fe	Fe2O3	Р	P2O5
Theory (1)		37,60		9,78				34,90
272	12415	2,35	27990	3,50	1497	0,21	85205	19,53
274			23242	2,91	3094	0,44	80878	18,53
276			27413	3,43	958	0,14	86965	19,93
280			18742	2,35	15510	2,22	73560	16,86
290	51964	9,82	36368	4,55	2051	0,29	83907	19,23
292	40196	7,59	26313	3,29	4407	0,63	70651	16,19
294			18557	2,32	12692	1,81	74308	17,03
296	34003	6,42	32146	4,02	10225	1,46	72713	16,66
298	4920	0,93	26306	3,29	17865	2,55	58901	13,50
300			20171	2,53	7748	1,11	80524	18,45
303	123347	23,30	49047	6,14	3666	0,52	76610	17,56
305	97870	18,50	43544	5,45	5504	0,79	69624	15,96
307	48065	9,10	31282	3,92	3937	0,56	73277	16,79
309	78132	14,80	36951	4,63	222	0,03	87745	20,11
311	125532	23,70	46765	5,85	404	0,06	79078	18,12
313	9248	1,70	31586	3,95	8158	1,17	76295	17,48
315	121418	22,90	49176	6,16	2157	0,31	74698	17,12
317	111696	21,10	40458	5,07	4812	0,69	74112	16,98
319	197675	37,40	62930	7,88	3760	0,54	85453	19,58
321	88889	16,80	43773	5,48	2444	0,35	77232	17,70
324	41681	7,90	30759	3,85	1416	0,20	74488	17,07
326			26410	3,31	1403	0,20	85695	19,64
328			28533	3,57	2710	0,39	91376	20,94
330	7280	1,40	23933	3,00	692	0,10	71377	16,36

Figure 28-Annexe 4 photos des intailles de cornaline

Figure 29-Annexe 5 : Localisation des gisements de cornaline d'après Naturalis Historia de Pline l'Ancien. (Gliozzo, 2019).