UNIVERSITÉ DE NANTES FACULTÉ DES SCIENCES ET DES TECHNIQUES

ANNEE 2017-2018

DIPLÔME UNIVERSITAIRE DE GEMMOLOGIE

MEMOIRE EXPERIMENTAL

Rédigé PAR :

LEILA BEN HAJ LARBI

IDENTIFICATION D'UN LOT DE PIERRES DE TANZANIE

Professeur: Emmanuel FRITSCH

Docteur : Benjamin RONDEAU

Remerciements :

Je remercie tout d'abord le professeur Emmanuel Fritsch pour son aide et sa disponibilité.

Je remercie ensuite l'ensemble des enseignants du DUG : Dr Benjamin Rondeau, M. Franck Notari et Dr. Stephanos karampelas.

Un grand merci à ma famille qui m'a soutenu tout au long de cette aventure, ma mère qui s'est déplacée de Tunisie, mes enfants qui ont sacrifié leurs vacances scolaires pour que maman fasse ses devoirs et surtout mon mari pour son soutien sans faille et pour avoir rendu cette aventure possible.

Je remercie aussi Fabienne Thouvenaut pour son accueil à l'école des gemmes et la mise à disposition de la balance hydrostatique.

Je remercie enfin les ingénieurs de l'institut des matériaux de Nantes pour leurs aides ponctuelles et précieuses.

SOMMAIRE

INTRODUCTION

I/La Gemmologie classique :

A /L'observation

1/La loupe 10X

2/Le microscope

B/Le polariscope

C/Le réfractomètre

D/La balance Hydrostatique

II/Les techniques de laboratoire

A/La spectrométrie Raman

B/La spectrométrie Infrarouge

C/La spectrométrie UV-VIS-PIR

D/Le Microscope à balayage électronique MEB

III/Matériel

IV/Résultats

V/Discussion

VI/Conclusion

REFERENCES

Annexes

INTRODUCTION

Ma passion pour les pierres précieuses m'a emportée d'une aventure à une autre de l'ING à la Gem-A et me voilà à la fin du périple en DUG essayant de percer encore leur mystère pour trouver le secret de leur enchantement.

Mon but depuis le début de cette aventure était d'être capable de déterminer l'identité des gemmes avec certitude et quand j'avais fini mes cours de gemmologie classique j'avais compris que ce n'était que le début !

La gemmologie classique malgré son efficacité reste souvent limitée et ne permet pas dans certains cas de trancher quand à l'identité des gemmes.

Mon projet à travers ce mémoire consiste à comprendre et maitriser les techniques d'analyse de laboratoire et de comparer leurs résultats avec les résultats de la gemmologie classique dans la mesure du possible.

Les limites des techniques de laboratoires seront ainsi aussi explorées.

Le professeur Emmanuel Fritsch m'a généreusement prêté un lot de pierres de Tanzanie à identifier.

Toutes les techniques disponibles seront utilisées pour cette identification, à savoir :

La gemmologie classique, la spectrométrie FT-Raman, la spectrométrie infrarouge FTIR, la spectrométrie UV-VIS-PIR, le microscope à balayage électronique MEB.

4

I/La Gemmologie classique :

La gemmologie classique dans le cadre de ce mémoire n'a pas été d'un grand secours.

Les échantillons utilisés dans le cadre de ce mémoire sont des pierres brutes parfois de très petite taille, ne présentant pas de surfaces planes ni polies ce qui a considérablement limité l'utilisation du réfractomètre, du spectroscope et du dichroscope et même du polariscope car de nombreux échantillons (qui se sont révélé des grenats) ont montré beaucoup d'anomalies d'extinction.

Les mesures de densité ont été privilégiées.

A /L'observation :

L'observation a été effectuée essentiellement à l'œil nu.

Les caractéristiques des pierres comme l'éclat, la brillance, la double réfraction ou encore la dureté n'étaient pas observables sur les échantillons à cause de l'irrégularité des surfaces.

La couleur des pierres était le critère de départ pour l'analyse.

1/La loupe 10X :

La loupe aplanétique 10X a permis de constater que les surfaces des pierres présentent des cassures et des irrégularités témoignant des chocs subis par ces pierres durant leur transport.

2/Le microscope :

Le microscope a permis le nettoyage des échantillons des traces de la laque d'argent et de la métallisation.

B/Le polariscope :

Le polariscope a permis de vérifier l'isotropie de l'anisotropie des pierres et l'observation s'est faite dans un liquide dense et sous la loupe pour certains cas qui semblaient montrer beaucoup d'anomalies.

Les résultats de ces observations n'ont pas été pris en compte.

5

C/Le réfractomètre :

Seules quelques pierres ont été polies et la lecture des indices de réfraction a permis de constater qu'on restait dans la majorité des cas dans des plages très proches qui ne permettaient pas de trancher quant à l'identité des pierres vu que la lecture était essentiellement une lecture au point.

D/La balance hydrostatique :

La balance hydrostatique a permis de calculer la densité de chaque échantillon qui est une caractéristique parfois déterminante dans l'identification des gemmes.

Elle utilise le principe de la poussée d'Archimède pour la détermination de la densité: D tel que $D = \frac{mair}{mair-meau}$ et où *m*air est la masse de l'échantillon dans l'air et *m*eau est la masse de l'échantillon dans l'eau.

Le calcul de la densité est une technique de gemmologie classique réalisable et accessible sur touts les échantillons indépendamment des dimensions, de l'aspect de surface ou de la transparence, elle a donc été privilégiée dans le cadre des analyses de ce mémoire.

La balance hydrostatique utilisée dans le cadre de ce mémoire est de marque

METTLER TOLEDO CB203

Photo 1 : balance hydrostatique

II/Les techniques de laboratoire :

A/La spectrométrie FT-Raman :

Le FT-Raman utilisé est celui de l'institut des matériaux de Nantes : Brucker RFS 100 MultiRam

La résolution spectrale est de 4 cm-1, la longueur d'onde du laser est de 1064 nm et le logiciel utilisé est OPUS.

La rapidité de la réalisation des spectres et la facilité de la préparation des échantillons (aucune préparation préalable) ont fait que cette technique soit la plus utilisée dans ce mémoire.

Le nombre de scans est de 100 scans pour 1scan/s, ce qui permettait d'avoir un spectre en presque deux minutes, ce qui était pratique vu le nombre élevé des échantillons.

Cette technique permet aussi d'obtenir des spectres sur des échantillons bruts et /ou de petites tailles impossible à étudier en gemmologie classique.

Principe :

La technique FT-Raman permet l'identification de l'espèce minérale étudiée en mesurant la lumière diffusée par la vibration des molécules de l'échantillon suite à l'excitation au laser.

Une base de données permet de comparer les spectres obtenus avec les spectres de différentes espèces minérales conduisant ainsi à une identification.

La base de donnée utilisée dans ce mémoire est surtout Le magasine de l'association française de gemmologie dans son hors série de 1992.

B/La spectrométrie Infrarouge :

Le spectromètre infrarouge utilisé est un spectromètre à transformée de Fourier Brucker Vertex70 de l'institut des matériaux de Nantes.

Le domaine spectral s'étend de 0 à 7000cm-1 avec une résolution de 4 cm-1 et en cumulant 100 scans /seconde.

Le domaine spectral est réduit en fonction de l'échantillon.

Une seule mesure de référence a été effectuée en début des mesures.

Principe:

Comme la spectrométrie Raman la spectrométrie infrarouge est une spectrométrie vibratoire et elle permet de détecter les vibrations moléculaires.

Un spectre est obtenu et son allure est comparée à une base de données pour l'identification.

Les pierres qui ont été identifiées avec les autres techniques à savoir FT-Raman, MEB et densité serviront de références pour les spectres FTIR.

C/La spectrométrie UV-VIS-PIR :

Les spectres effectués n'ont malheureusement pas été récupérés suite à un dysfonctionnement du logiciel et cette technique a été abandonnée.

D/Le Microscope électronique à balayage MEB :

Principe :

Le MEB utilisé est un MEB-JOEL 5800 LV avec un courant de 0,5 nano Ampère (nA), une tension d'accélération de 15 Kv (Kilo volt) et une distance de travail de 15 mm

Un faisceau d'électrons est envoyé sur l'échantillon à étudier et différents détecteurs permettent l'assemblage des électrons secondaires et des rayons X et des photons visibles émanant de la surface de l'échantillon.

Ainsi le MEB permet d'avoir une analyse qualitative sous forme de spectres et une analyse quantitative sous forme de tableau contenant les teneurs en éléments chimiques majeurs des échantillons en pourcentage atomique.

Le logiciel utilisé pour le traitement des données est IDFix.

Le MEB permet aussi l'obtention d'images de la surface des échantillons par cathodoluminiscence.

Les échantillons nécessitent une préparation avant d'aller dans le MEB :

Après un nettoyage à l'alcool pour enlever toute trace de doigts, l'échantillon à étudier est fixé sur un plot en laiton avec de la pate de carbone et de la laque d'argent qui servira aussi à relier la surface de l'échantillon et le plot.

8

L'échantillon subit ensuite une métallisation qui consiste à déposer une fine couche de carbone sous vide.

L'ensemble de la préparation vise à rendre l'échantillon conducteur d'électrons et d'éviter les nuages d'électrons qui peuvent nuire aux résultats.

Pour ce mémoire, l'analyse chimique et la quantification des éléments majeurs étaient d'une grande importance pour l'identification des pierres étudiées.

III/Matériel :

Les pierres utilisées pour ce mémoire sont des petites pierres brutes au nombre de 102 de différentes couleurs toutes provenant de la région de Tunduru de Tanzanie.

Tunduru est l'un des cinq districts de la région de Ruvuma en Tanzanie. Au nord, il est délimité par la région de Lindi, à l'est par la région de Mtwara, au sud par le Mozambique et enfin à l'ouest par le district de Namtumbo. (Wikipédia)

Fig0 : Carte de Tanzanie : Tunduru est une région du sud de la Tanzanie.

IV/Résultats :

Un premier tri des pierres a été effectué en fonction des couleurs a permis d'identifier 8 lots de pierres de mêmes couleurs (voir photo2 ci-dessous)

LOT A: Pierre rose violacée

LOT B: Pierres brun foncé LOT C: Pierres rouge LOT D: Pierres jaune vert LOT E: Pierres vert foncé LOT F: Pierres bleu violacé LOT G: Pierres violacées LOT H: Pierres vertes LOT I: Pierre orange LOT J: Pierres incolores LOT K: Pierre incolore orangée

LOT L: Pierre rose orangée

Photo 2 : tri des pierres en fonction des couleurs

LOT Z: Pierres opaques qui pour certaines montrent une couleur foncée sous lumière transmise.

Un lot de pierres analysé au MEB sera nommé LB 11-LB12-LB13-LB14-LB15-LB16

Les résultats des analyses sont regroupés sous forme de tableau permettant de visualiser l'identité présumée selon chaque analyse.

Certains spectres FT-Raman n'ont pas été récupérés mais leurs résultats ont été pris en compte dans ce tableau et leurs scans seront intégrés dans le mémoire.

Tableau récapitulatif des résultats des analyses

N°	échantillon	Identité	identité	identité	Densité
échantillon	nouveau	échantillon	échantillon FT-	échantillon	G/cm3
	nom	MEB	Raman	FTIR	
1.	A1		Rhodolite/almandin		3,874
					4.677
2.	A2				4,677
3.	A3				3,815
4.	A4		Rhodolite		3,860
5.	A5				3,869
6.	A6				3,868
7.	A7				3,808
8.	A8		Rhodolite (scan)		3 ,846
9.	A9		Almandin /Rhodolite		3,858
10.	A10				3,961
11.	A11				3,752
12.	A12				3,84
13.	A13				3,955
14.	A14	Rhodolite	Rhodolite(SCAN)	Référence Rhodolite	3,833
15.	B1		Tourmaline: dravite		3,034
16.	B2	Tourmaline			3,062
17.	B3				3,055
18.	B4				3,705
19.	B5				3,022
20.	C1		Rhodolite	Rhodolite	3,518
21.	C2				3,989
22.	C3				3,798
23.	C4				3,675
24.	C5				3,786
25.	C6		Rhodolite		3,860
26.	C7	Rhodolite			3,949
27.	D1		chrysobéryl		3,69
28.	D2		Corindon (scan)		3,967

29.	D3	Zircon	?		5,202
30.	D4	Zircon	Zircon		4,430
31.	D5		Corindon		3,881
32.	D6		Quartz		2,637
33.	D7				4,55
34.	D8				4,586
35.	D9				4,291
36.	D10				4,435
37.	D11				4,411
38.	D12	Zircon			4,578
39.	D13		Zircon		4,359
40.	D14				4,503
41.	D15				4,485
42.	D16				4,544
43.	D17				
44.	D18				4,574
45.	D19				4 ,55
46.	E1	Tsavorite	Tsavorite(scan)	Tsavorite reference	3,592
47.	F1		Corindon		3,968
48.	F2				3,956
49.	G1		Spinelle		3,593
50.	G2		Spinelle (scan)		3,571
51.	G3		Spinelle		3,467
52.	G4				3,461
53.	G5				3,623
54.	H1			Zircon	4,236
55.	H2			zircon	4,108
56.	H3		Quartz (scan)	Quartz	2,590
57.	H4			Zircon	4,232
58.	H5			Grenat	3,313
50				grossulaire	4.250
59.	H6				4,256
60.	H7				4,074

61.	H8				4,2
62.	H9				4,261
63.	H10	Zircon		Zircon	4,119
				référence2	0.550
64.	I-1		Grenat gross (scan)	Grossulaire référence	3,552
65.	I-2		Grenat gross (scan)		3,612
66.	I-3		Rhodolite (scan)		3,784
67.	I-4		Spessartite (scan)		4,142
68.	I-5		Grenat gross (scan)		3 ,566
69.	I-6		Grenat gross ((scan)		3,573
70.	I-7		Grenat gross		
71.	I-8	Grenat			3,582
		grossulaire			0.544
72.	I-9				3,544
/3.	I-10				3,568
74.	I-11				3,413
75.	I-12				3,521
/6.	I-13				3,504
//.	I-14				3,638
78.	I-15				3,583
79.	I-16				3,597
80.	I-17		T		3,609
81.	J-1				3,516
82.	J-2	T	Quartz (scan)		2,629
83.	J-3	Topaze			3,237
84.	J-4		T		2,645
85.	K1	Caract	Topaze		3,557
86.	L1	spe/pyrope	Grenat almandin		3,962
87.	Z-1			zircon	3,964
88.	Z-2			zircon	4,615
89.	Z-3		Tourmaline (scan)		2,984
90.	Z-4		Spinelle (scan)	Spinelle Référence	3,528
91.	Z-5	Spinelle			3,44
92.	Z-6	Tourmaline Elbaite	Tourmaline (scan)		2,927
93.	Z-7		Spinelle (scan)	Spinelle	3,125
94.	Z-8	Spinelle			3,607
95.	Z-9	Grenat grossulaire			3,407
96.	Z-10	Spinelle			3,531

97.	LB11	Grenat grossulaire		3,552
98.	LB12	Grenat grossulaire		3,479
99.	LB13	Quartz	Quartz référence	2,649
100.	LB14		aluminosilicate	3,602
101.	LB15		Corindon ?	3,730
102.	LB16	Zircon	Zircon référence	4,451

Les couleurs de la colonne densité de la plus claire à la plus foncée traduisent des valeurs croissantes du jaune clair 2,59 au rouge foncé 5,202.

Vu le nombre important des échantillons, plusieurs pierres n'ont pas pu être analysées .

V/Discussion :

A travers ce tableau récapitulatif on peut observer généralement une concordance entre les différentes techniques appliquées à une même pierre et la valeur de la densité mesurée.

Dans certains cas l'identification est difficile comme dans le cas de la pierre D3 qui présente un spectre Raman et une densité (5,202) qui ne correspondent pas à l'analyse au MEB à savoir un Zircon.

On notera que les grenats étudiés dans le cadre de ce DUG présentent des pics qu'on retrouve dans différents types de grenats cela est du au fait que les grenats sont des solutions solides.

La difficulté rencontrée à récupérer les spectres FTIR des minéraux dans les sites de bases de données indiqués par les enseignants m'a amené à mettre en place des spectres références à partir des pierres analysées.

Le spectre FTIR de la pierre A14 a été utilisé comme référence pour les Rhodolite.

Le spectre FTIR de la pierre H10 a été utilisé comme référence pour les Zircons.

Le spectre FTIR de la pierre I-1 a été utilisé comme référence pour les grenats grossulaires.

Le spectre FTIR de la pierre Z4 a été utilisé comme référence pour les Spinelles.

Le spectre FTIR de la pierre LB 13 a été utilisé comme référence pour le quartz.

Le spectre FTIR de la pierre E1 a été utilisé comme référence pour la tzavorite.

On remarque que la pierre B4 a une densité de 3,7, ce qui représente une densité supérieure à celle du groupe tourmaline malgré son aspect similaire et mérite plus d'analyse.

Pour certaines pierres comme D12 l'analyse quantitative n'a pas été possible donc seules l'analyse qualitative et la densité ont permis de proposer une identité.

On peut remarquer que certains Zircon : D-4 et D13 présentent des pics principaux à 998 et 346 ou 344 au lieu de 1008 et 355(AFG 1992)

Le cas de la pierre L1 est intéressant car il illustre bien les grenats sous leur forme « solution solide » ; En effet, ce grenat montre des teneurs en éléments qui correspondrait avec un mélange Rhodolite / Spessartite et un spectre montrant des pics de Spessartite /Almandin.

Les pierres LB14 et LB15 sont encore à déterminer..

Dans ce cas les analyses chimiques obtenues au MEB permettront de privilégier le type de grenat mais dans l'absence de ces analyses la valeur de la densité peut aider à les identifier.

Une des difficultés rencontrées lors de l'identification des grenats est la grande différence entre les valeurs de densités selon les sources par exemple selon le magasine de l'AFG la densité du pyrope est de: 3,40 -3,78 alors que selon les tableaux de la Gem-A la densité du pyrope est de: 3,7-3,8.

L'allure des spectres en général permet d'avoir une idée sur l'identité possible de l'échantillon étudié mais seules les valeurs des pics permettent de trancher quant à son identité exacte.

Je citerai comme exemple en spectrométrie Raman les spectres des corindons, des chrysobéryls et des spinelles étudiés durant ce DUG. Ces spectres ont montré des allures semblables mais des pics de valeurs différentes : un pic à 406 ou 408 indique qu'on est en présence d'un spinelle, un pic à 418 indique qu'on est en présence d'un corindon et enfin un pic à 477 indique qu'on est en présence d'un chrysobéryl.

Ou encore en spectrométrie infrarouge le cas de spectres de Rhodolite et Spinelle, on remarquera la même allure générale mais des différences dans les détails.

15

Pour certaines pierres, l'enregistrement des données a été défectueux et les données après traitement ne donnent pas de spectres comme A-8 et D-2, le scan des spectres a quand même été utilisé pour l'identification.

VI/Conclusion :

La complémentarité des différentes techniques disponibles de gemmologie classique et celles de gemmologie de laboratoire semblent toujours nécessaire pour établir l'identité exacte d'une gemme.

La mise en commun des résultats des recherches et le partage des bases de données par différentes universités et laboratoires à travers le monde est nécessaire pour pouvoir utiliser les techniques de laboratoires.

L'apport de la gemmologie classique est déterminant dans certains cas surtout si on ne dispose que d'une seule technique de laboratoire.

Une question reste à explorer : y-a-t-il un lien entre les types de spectres obtenus de la même espèce minérale et les différences des densités ?

La majorité du temps alloué à ce DUG était investi dans le traitement des données, d'ou très peu de recherches bibliographiques ont été menées pour l'interprétation des détails des spectres et celles qui ont été menées ont servi à identifier les espèces minérales.

Il serait donc intéressant de voir plus en détail les différents pics et leur significations notamment le doublet 2850-2920 rencontré dans plusieurs spectres.

Et pour finir il est intéressant de noter que les pierres gemmes triés selon les couleurs au début de l'analyse se sont révélés pour la plupart de même espèce minérale pour chaque lot.

REFERENCES :

« -Rondeau B., (2003) Matériaux Gemmes de Référence du Muséum National D'Histoire Naturelle: exemples de valorisation scientifique d'une collection de minéralogie et gemmologie. Mémoire thèse de doctorat, Université de Nantes, Nantes, France, pages 17_41. »

« -CHALAIN J-P., (1992) Vers une gemmologie de laboratoire. Mémoire DUG, Université de Nantes, Nantes, France, 70 pages. »

Association Française de Gemmologie (1992) La microsonde Raman en gemmologie. Editions A.F.G., 60 pages.

Sites Web :

https://www.mindat.org/ (consulté en mars 2018)

http://rruff.info (consulté en mars 2018)

http://minerals.gps.caltech.edu/ (consulté en mars 2018)

Annexes

Les spectres FT-Raman

FIG 1: Spectre d'absorption en FT-Raman de la pierre A4

FIG 2: Spectre d'absorption en FT-Raman de la pierre A4

Les pics principaux dans ce spectre sont en faveur d'une Rhodolite.

FIG 3: Spectre d'absorption en FT-Raman de la pierre A9

FIG 4: Spectre d'absorption en FT-Raman de la pierre B1

FIG : Détail du spectre d'absorption en FT-Raman de la pierre B1

FIG 5: Spectre d'absorption en FT-Raman de la pierre C6

FIG 6: Spectre d'absorption en FT-Raman de la pierre D1

FIG 7: Détail du spectre d'absorption en FT-Raman de la pierre D1

FIG 8: Spectre d'absorption en FT-Raman de la pierre D3

FIG 9: Détail du spectre d'absorption en FT-Raman de la pierre D3

FIG10 : Spectre d'absorption en FT-Raman de la pierre D4

FIG 11: Détail du spectre d'absorption en FT-Raman de la pierre D4

FIG 12: Spectre d'absorption en FT-Raman de la pierre D5

FIG 13: Détail du spectre d'absorption en FT-Raman de la pierre D5

FIG 14: Spectre d'absorption en FT-Raman de la pierreD6

FIG 15: Détail du spectre d'absorption en FT-Raman de la pierre D6

FIG16 : Spectre d'absorption en FT-Raman de la pierreD13

FIG 17: Détail du spectre d'absorption en FT-Raman de la pierre D13

FIG 18: Spectre d'absorption en FT-Raman de la pierre F1

FIG 19: Détail du spectre d'absorption en FT-Raman de la pierre F1

FIG 20: Spectre d'absorption en FT-Raman de la pierre G1

FIG21 : Détail du spectre d'absorption en FT-Raman de la pierre G1

FIG 22: Spectre d'absorption en FT-Raman de la pierre G 3

FIG23 : Spectre d'absorption en FT-Raman de la pierre I-7

FIG 25: Spectre d'absorption en FT-Raman de la pierre K1

FIG 25 : Spectre d'absorption en FT-Raman de la pierre L1

- Seuls les pics en rouge sont en faveur de l'almandin.
- Les pics en violet sont en faveur de la rhodolite.

Les spectres FTIR

FIG 26: Spectre FTIR de la pierre LB13

FIG27 : Détail spectre FTIR de la pierre LB13

FIG28 : Spectre FTIR de la pierre LB14

FIG 29: Détail spectre FTIR de la pierre LB14

FIG 30: Spectre FTIR de la pierre LB15

FIG 31: Détail spectre FTIR de la pierre LB15

FIG 33: Détail spectre FTIR de la pierre LB16

FIG34 : Spectre FTIR de la pierre Z-7

FIG 35: Détail spectre FTIR de la pierre Z-7

FIG36 : Spectre FTIR de la pierre A14

FIG37 : Détail spectre FTIR de la pierre A14

FIG 38: Spectre FTIR de la pierre C1

FIG 39: Détail spectre FTIR de la pierre C1

FIG 40: Spectre FTIR de la pierre E1

FIG41 : Détail spectre FTIR de la pierre E1

FIG42 : Spectre FTIR pierre Z-1

FIG 43: Détail spectre FTIR pierre Z-1

FIG 44: Spectre FTIR pierre Z-2

FIG 45: Détail spectre FTIR pierre Z-2

FIG 46: Spectre FTIR pierre Z-4

FIG 47: Détail spectre FTIR pierre Z-4

FIG48 : Spectre FTIR pierre I-1

FIG49 : Détail spectre FTIR pierre I-1

FIG 50: Spectre FTIR pierre H-1

FIG 51: Détail spectre FTIR pierre H-1

FIG52 : Spectre FTIR pierre H-2

FIG 53: Détail spectre FTIR pierre H-

FIG 54: Spectre FTIR pierre H-3

FIG 55: Détail spectre FTIR pierre H-3

FIG 56: Spectre FTIR pierre H-4

FIG57 : Détail spectre FTIR pierre H-4

FIG 58: Spectre FTIR pierre H-5

FIG59 : Détail spectre FTIR pierre H-5

FIG 60: Détail spectre FTIR pierre H-10

FIG 61: Détail spectre FTIR pierre H-10

Résultats de L'analyse quantitative au MEB

Elt	Ligne	Int	Erreur	K	Kr	P%	A%	ZAF
0	Ка	1696.4	110.5654	0.7272	0.1637	37.84	56.66	0.4404
Mg	Ка	765.6	2.3215	0.0999	0.0451	7.45	7.34	0.6056
AI	Ка	1352.3	2.3215	0.1904	0.0793	12.19	10.83	0.6519
Si	Ка	1981.9	2.3215	0.7062	0.1388	20.23	17.26	0.6864
Са	Ка	171.3	0.5246	0.0806	0.0252	2.80	1.68	0.8978
Mn	Ка	11.6	0.6111	0.0037	0.0037	0.45	0.19	0.8256
Fe	Ка	300.1	0.6111	0.2772	0.1172	14.08	6.04	0.8340
				2.0852	0.5730	95.05	100.00	

FIG 62: Analyse quantitative de la pierre C7 au MEB

Ces résultats permettent d'établir la formule suivante (Mg, Fe, Mn)3 Al2(SiO4)3 ce qui représente La Rhodolite.

Elt	Ligne	Int	Erreur	к	Kr	P%	A%	ZAF
0	Ка	958.6	109.1397	0.4110	0.0925	28.07	55.64	0.3792
F	Ка	7.3	109.1397	0.0058	0.0007	0.31	0.52	0.2256
Na	Ка	24.8	1.6125	0.0053	0.0015	0.28	0.38	0.5422
Mg	Ка	794.7	1.6125	0.1037	0.0468	6.76	8.82	0.6999
Al	Ка	1381.1	1.6125	0.1945	0.0810	11.89	13.98	0.6960
Si	Ка	1522.0	1.6125	0.5423	0.1066	16.13	18.21	0.6807
Са	Ка	175.7	0.7537	0.0827	0.0258	2.97	2.35	0.8708
Ti	Ка	7.1	0.1479	0.0014	0.0014	0.17	0.11	0.8076
				1.3466	0.3563	66.58	100.00	

FIG 63: Analyse quantitative de B2

B2 est une tourmaline

					1		1	
Elt	Ligne	Int	Erreur	К	Kr	P%	A%	ZAF
0	Ка	1586.8	32.1168	0.6802	0.1532	31.97	41.20	0.4788
F	Ка	714.9	32.1168	0.5662	0.0684	22.89	24.84	0.2988
Al	Ка	3605.1	12.7808	0.5076	0.2114	28.52	21.80	0.7411
Si	Ка	1534.6	12.7808	0.5468	0.1075	16.55	12.15	0.6470
				2.3009	0.5404	99.94	100.00	

FIG 64: Analyse quantitative de J3

Les proportions des différents éléments permettent d'établir la formule suivante Al2 Si O4(OH,F)2

Qui est celle d'une Topaze.

Elt	Ligne	Int	Erreur	К	Kr	P%	A%	ZAF
0	Ка	412.5	101.8476	0.1768	0.0398	22.54	48.16	0.1944
Mg	Ка	14.8	1.1381	0.0019	0.0009	0.13	0.19	0.6465
Al	Ка	1065.8	1.1381	0.1501	0.0625	8.46	10.71	0.7460
Si	Ка	1744.9	1.1381	0.6217	0.1222	16.25	19.79	0.7630
Са	Ка	1460.0	0.9801	0.6869	0.2145	23.88	20.37	0.9091
V	Ка	27.6	0.3412	0.0064	0.0064	0.81	0.54	0.7896
Mn	Ка	9.6	0.3412	0.0030	0.0030	0.38	0.24	0.8034
				1.6469	0.4493	72.45	100.00	

FIG65 : Analyse quantitative de la pierre E1 au MEB

La formule de la tzavorite est vérifiée dans cette analyse à savoir : (Ca, Mn, V)3 (Al,Mg)2(SiO4)3

Elt	Ligne	Int	Erreur	К	Kr	P%	A%	ZAF
0	Ка	852.7	38.7380	0.3656	0.0823	32.66	64.78	0.2539
Al	Ка	50.8	9.5637	0.0071	0.0030	0.37	0.44	0.7988
Si	Ка	2048.1	9.5637	0.7298	0.1434	15.67	17.70	0.9127
Zr	La	2223.7	9.5637	0.3819	0.3819	49.12	17.09	0.7812
				1.4844	0.6106	97.82	100.00	

FIG 66: Analyse quantitative de la pierre H10 au MEB

Il s'agit d'un Zircon ZrSiO4

Elt	Ligne	Int	Erreur	К	Kr	P%	A%	ZAF
0	Ка	667.6	152.5941	0.2862	0.0644	30.91	52.41	0.2185
Al	Ка	1318.8	1.9768	0.1857	0.0773	10.56	10.61	0.7356
Si	Ка	2057.7	1.9768	0.7332	0.1441	19.21	18.55	0.7531
Са	Ка	1566.9	1.1322	0.7372	0.2302	25.54	17.28	0.9052
Fe	Ка	49.6	0.4390	0.0458	0.0194	2.36	1.15	0.8215
				1.9881	0.5354	88.58	100.00	

FIG 67: Analyse quantitative de la pierre I-8 au MEB=Grenat grossulaire.

Elt	Ligne	Int	Erreur	К	Kr	P%	A%	ZAF
0	Ка	1058.8	89.3726	0.4539	0.1022	25.50	49.44	0.4283
Mg	Ка	869.6	1.6392	0.1135	0.0512	8.26	10.54	0.6264
Al	Ка	1152.4	1.6392	0.1623	0.0676	10.58	12.17	0.6472
Si	Ка	1709.0	1.6392	0.6089	0.1197	18.03	19.91	0.6775
Са	Ка	93.1	0.4730	0.0438	0.0137	1.53	1.18	0.8970
Fe	Ка	259.6	0.5902	0.2398	0.1014	12.17	6.76	0.8392
				1.6222	0.4557	76.06	100.00	

FIG 68: Analyse quantitative de la pierre A 14 au MEB=Rhodolite

Elt	Ligne	Int	Erreur	К	Kr	P%	A%	ZAF
0	Ка	1060.5	83.6193	0.4546	0.1024	42.57	61.13	0.2447
Mg	Ка	41.8	2.5644	0.0055	0.0025	0.39	0.37	0.6290
Al	Ка	1379.8	2.5644	0.1943	0.0809	11.15	9.49	0.7263
Si	Ка	1987.9	2.5644	0.7083	0.1392	18.63	15.24	0.7461
Са	Ка	1452.7	0.9832	0.6835	0.2134	23.84	13.66	0.8963
Mn	Ка	6.7	0.2195	0.0021	0.0021	0.27	0.11	0.7956
				2.0482	0.5405	96.84	100.00	

FIG69: Analyse quantitative de la pierre LB 11 au MEB=Grenat grossulaire

Elt	Ligne	Int	Erreur	К	Kr	P%	A%	ZAF
0	Ка	916.1	341.9691	0.3927	0.0884	38.86	57.72	0.2321
Mg	Ка	40.0	5.8256	0.0052	0.0024	0.37	0.36	0.6363
Al	Ка	1453.5	5.8256	0.2047	0.0852	11.64	10.25	0.7332
Si	Ка	2086.4	5.8256	0.7434	0.1461	19.52	16.52	0.7479
Са	Ка	1537.4	1.1566	0.7233	0.2259	25.17	14.93	0.8985
Ti	Ка	4.8	0.2429	0.0009	0.0009	0.12	0.06	0.7923
Mn	Ка	4.5	0.1764	0.0014	0.0014	0.18	0.08	0.7979
Fe	Ка	4.1	0.1764	0.0037	0.0016	0.19	0.08	0.8148
				2.0755	0.5519	96.05	100.00	

FIG 70: Analyse quantitative de la pierre LB 12 au MEB=Grenat grossulaire

Elt	Ligne	Int	Erreur	K	Kr	P%	A%	ZAF
0	Ка	1490.8	105.9966	0.6391	0.1439	39.52	60.65	0.3933
Mg	Ка	0.0	0.0000	0.0000	0.0000	0.00	0.00	0.6889
Al	Ка	76.1	2.3563	0.0107	0.0045	0.57	0.52	0.7849
Si	Ка	5257.0	2.3563	1.8731	0.3682	44.14	38.59	0.8513
Са	Ка	7.0	0.5421	0.0033	0.0010	0.12	0.07	0.8540
Ti	Ка	2.2	0.2100	0.0004	0.0004	0.05	0.03	0.8031
Mn	Ка	3.2	0.2197	0.0010	0.0010	0.13	0.06	0.7929
Fe	Ка	4.3	0.2197	0.0040	0.0017	0.21	0.09	0.8063
				2.5316	0.5207	84.73	100.00	

FIG 71: Analyse quantitative de la pierre LB 13 au MEB=Quartz

Elt	Ligne	Int	Erreur	К	Kr	P%	A%	ZAF
0	Ка	931.6	8.5362	0.3994	0.0899	25.07	50.29	0.3991
Al	Ка	3546.4	4.5095	0.4994	0.2079	26.41	31.42	0.8170
Si	Ка	1372.0	4.5095	0.4888	0.0961	15.73	17.98	0.6304
Fe	Ка	11.3	0.3766	0.0105	0.0044	0.54	0.31	0.8210
				1.3981	0.3984	67.75	100.00	

FIG 72: Analyse quantitative de la pierre LB 14 au MEB

Elt	Ligne	Int	Erreur	K	Kr	P%	A%	ZAF
0	Ка	1640.1	90.5239	0.7031	0.1583	36.18	59.95	0.4805
Mg	Ка	8.0	4.2628	0.0010	0.0005	0.07	0.07	0.6971
Al	Ка	4872.4	4.2628	0.6861	0.2857	38.87	38.20	0.7716
Si	Ка	65.3	4.2628	0.0233	0.0046	0.82	0.77	0.5588
Са	Ка	4.8	0.1645	0.0022	0.0007	0.08	0.05	0.8806
Ті	Ка	2.7	0.1230	0.0005	0.0005	0.06	0.04	0.8238
Mn	Ка	1.9	0.3218	0.0006	0.0006	0.07	0.04	0.8078
Fe	Ка	39.0	0.3218	0.0360	0.0152	1.86	0.88	0.8196
				1.4529	0.4661	78.01	100.00	

FIG 73: Analyse quantitative de la pierre LB 15 au MEB

L'analyse est en faveur d'un corindon de formule Al2O3 contenant des impuretés.

Elt	Ligne	Int	Erreur	К	Kr	P%	A%	ZAF
0	Ка	617.7	7.5457	0.2648	0.0596	25.46	59.52	0.2417
Al	Ка	46.5	10.8165	0.0065	0.0027	0.34	0.46	0.8131
Si	Ка	2005.3	10.8165	0.7145	0.1404	15.10	20.11	0.9280
Zr	La	2172.9	10.8165	0.3732	0.3732	48.55	19.90	0.7888
				1.3591	0.5760	89.45	100.00	

FIG74: Analyse quantitative de la pierre LB 16 au MEB=Zircon

Elt	Ligne	Int	Erreur	К	Kr	P%	A%	ZAF
0	Ка	0.0	0.0000	0.0000	0.0000	0.00	0.00	0.0000
Al	Ка	0.0	0.0000	0.0000	0.0000	0.00	0.00	0.0000
Si	Ка	0.0	0.0000	0.0000	0.0000	0.00	0.00	0.0000
Zr	La	0.0	0.0000	0.0000	0.0000	0.00	0.00	0.0000
				0.0000	0.0000	0.00	0.00	

FIG75: Analyse quantitative de la pierre D1 au MEB

Elt	Int	Erreur	K	Kr	P%	A%	ZAF
0	691.8	25.4780	0.2966	0.0668	27.94	64.76	0.2529
Si	1774.5	9.7219	0.6323	0.1243	13.55	17.89	0.9164
Zr	1879.8	9.7219	0.3228	0.3228	42.68	17.35	0.7831
			1.2517	0.5139	84.17	100.00	

FIG 76: Analyse quantitative de la pierre D4 au MEB=Zircon

Elt	Int	Erreur	К	Kr	P%	A%	ZAF
0	1351.9	13.5461	0.5796	0.1305	29.58	51.61	0.4763
Mg	1527.1	8.3974	0.1992	0.0899	12.55	14.41	0.7254
Al	3370.3	8.3974	0.4746	0.1976	31.69	32.79	0.6593
Fe	50.3	0.5897	0.0465	0.0197	2.39	1.20	0.8228
			1.2999	0.4376	76.21	100.00	

FIG 77: Analyse quantitative de la pierre Z-5 au MEB=Spinelle

Elt	Int	Erreur	К	Kr	P%	A%	ZAF
0	1730.3	23.5357	0.7418	0.1670	36.01	54.72	0.4885
Mg	1671.9	16.0338	0.2181	0.0984	13.81	13.81	0.7179
Al	3691.2	16.0338	0.5198	0.2164	34.01	30.64	0.6566
Fe	40.1	0.6189	0.0371	0.0157	1.91	0.83	0.8190
			1.5168	0.4975	85.75	100.00	

FIG 78: Analyse quantitative de la pierre Z-8 au MEB=Spinelle

Elt	Int	Erreur	К	Kr	P%	A%
0	1278.4	16.2647	0.5480	0.1234	28.43	51.52
Mg	1501.4	13.5927	0.1959	0.0884	12.23	14.58
AI	3251.4	13.5927	0.4578	0.1906	30.73	33.03
Fe	35.0	0.4502	0.0323	0.0137	1.67	0.86
			1.2341	0.4161	73.05	100.00

FIG 79: Analyse quantitative de la pierre Z-10 au MEB=Spinelle

Elt	Int	Erreur	К	Kr	P%	A%	ZAF
0	1037.4	88.0684	0.4448	0.1001	22.45	49.58	0.4768
Mg	391.9	1.2925	0.0511	0.0231	3.93	5.72	0.5906
AI	1019.2	1.2925	0.1435	0.0598	9.17	12.01	0.6611
Si	1530.2	1.2925	0.5452	0.1072	15.67	19.71	0.6984
Са	48.6	0.4722	0.0229	0.0071	0.77	0.68	0.9267
Mn	470.7	0.4349	0.1498	0.1498	17.99	11.57	0.8453
Fe	25.8	0.4349	0.0239	0.0101	1.18	0.74	0.8596
			1.3812	0.4571	71.15	100.00	

FIG 99: Analyse quantitative de la pierre L1 au MEB=Grenat

Elt	Int	Erreur	К	Kr	P%	A%	ZAF
0	1633.5	102.2298	0.7003	0.1577	38.18	69.27	0.4998
Na	119.9	2.3617	0.0256	0.0072	1.49	1.89	0.4857
Al	1690.5	3.0047	0.2380	0.0991	13.98	15.04	0.7256
Si	1213.4	3.0047	0.4324	0.0850	12.74	13.17	0.6804
Са	16.4	0.2985	0.0077	0.0024	0.28	0.20	0.8699
Mn	3.6	0.3535	0.0012	0.0012	0.15	0.08	0.7936
Fe	14.3	0.3535	0.0132	0.0056	0.69	0.36	0.8055
			1.4184	0.3582	67.51	100.00	

FIG80: Analyse quantitative de la pierre Z-6 au MEB

Z6 est une tourmaline

Elt	Int	Erreur	К	Kr	P%	A%	ZAF
0	997.5	229.0092	0.4276	0.0963	37.41	61.61	0.2708
AI	450.1	1.9760	0.0634	0.0264	3.91	3.81	0.6766
Si	1832.0	1.9760	0.6528	0.1283	16.90	15.85	0.7607
Са	1281.3	0.7858	0.6028	0.1882	20.59	13.53	0.9165
Fe	232.8	0.7670	0.2151	0.0909	11.00	5.19	0.8286
			1.9617	0.5302	89.81	100.00	

FIG81: Analyse quantitative de la pierre Z-9 au MEB

Z9 est un grenat grossulaire Ca3 (Al, Fe) 2(SiO4

Elt	Int	Erreur	K	Kr	P%	A%	ZAF
0	653.8	12.7554	0.2803	0.0631	26.71	62.93	0.2488
Si	1850.3	10.4329	0.6593	0.1296	14.05	18.85	0.9214
Zr	1947.4	10.4329	0.3344	0.3344	44.10	18.22	0.7849
			1.2740	0.5271	84.85	100.00	

FIG107 : Analyse quantitative de la pierre D 3 au MEB

Nous remarquons dans ce cas que la pierre est du zircon, elle contient en proportions égales le SI et le Zr et en plus grande proportion l'oxygène selon la formule : ZrSiO4